# //***************************************************************************** # * | File : epd2in13.py # * | Author : Waveshare team # * | Function : Electronic paper driver # * | Info : # *---------------- # * | This version: V3.0 # * | Date : 2018-11-01 # * | Info : python2 demo # * 1.Remove: # digital_write(self, pin, value) # digital_read(self, pin) # delay_ms(self, delaytime) # set_lut(self, lut) # self.lut = self.lut_full_update # * 2.Change: # display_frame -> TurnOnDisplay # set_memory_area -> SetWindow # set_memory_pointer -> SetCursor # * 3.How to use # epd = epd2in13.EPD() # epd.init(epd.lut_full_update) # image = Image.new('1', (epd2in13.EPD_WIDTH, epd2in13.EPD_HEIGHT), 255) # ... # drawing ...... # ... # epd.display(getbuffer(image)) # ******************************************************************************// # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documnetation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and//or sell # copies of the Software, and to permit persons to whom the Software is # furished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS OR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import time import spidev import RPi.GPIO as GPIO from PIL import Image # Pin definition RST_PIN = 17 DC_PIN = 25 CS_PIN = 8 BUSY_PIN = 24 # SPI device, bus = 0, device = 0 SPI = spidev.SpiDev(0, 0) def digital_write(pin, value): GPIO.output(pin, value) def digital_read(pin): return GPIO.input(BUSY_PIN) def delay_ms(delaytime): time.sleep(delaytime / 1000.0) def spi_writebyte(data): SPI.writebytes(data) def module_init(): GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(RST_PIN, GPIO.OUT) GPIO.setup(DC_PIN, GPIO.OUT) GPIO.setup(CS_PIN, GPIO.OUT) GPIO.setup(BUSY_PIN, GPIO.IN) SPI.max_speed_hz = 2000000 SPI.mode = 0b00 return 0; # Display resolution EPD_WIDTH = 122 EPD_HEIGHT = 250 class EPD: def __init__(self): self.reset_pin = RST_PIN self.dc_pin = DC_PIN self.busy_pin = BUSY_PIN self.width = EPD_WIDTH self.height = EPD_HEIGHT FULL_UPDATE = 0 PART_UPDATE = 1 lut_full_update = [ 0x80, 0x60, 0x40, 0x00, 0x00, 0x00, 0x00, # LUT0: BB: VS 0 ~7 0x10, 0x60, 0x20, 0x00, 0x00, 0x00, 0x00, # LUT1: BW: VS 0 ~7 0x80, 0x60, 0x40, 0x00, 0x00, 0x00, 0x00, # LUT2: WB: VS 0 ~7 0x10, 0x60, 0x20, 0x00, 0x00, 0x00, 0x00, # LUT3: WW: VS 0 ~7 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # LUT4: VCOM: VS 0 ~7 0x03, 0x03, 0x00, 0x00, 0x02, # TP0 A~D RP0 0x09, 0x09, 0x00, 0x00, 0x02, # TP1 A~D RP1 0x03, 0x03, 0x00, 0x00, 0x02, # TP2 A~D RP2 0x00, 0x00, 0x00, 0x00, 0x00, # TP3 A~D RP3 0x00, 0x00, 0x00, 0x00, 0x00, # TP4 A~D RP4 0x00, 0x00, 0x00, 0x00, 0x00, # TP5 A~D RP5 0x00, 0x00, 0x00, 0x00, 0x00, # TP6 A~D RP6 0x15, 0x41, 0xA8, 0x32, 0x30, 0x0A, ] lut_partial_update = [ # 20 bytes 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # LUT0: BB: VS 0 ~7 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # LUT1: BW: VS 0 ~7 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # LUT2: WB: VS 0 ~7 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # LUT3: WW: VS 0 ~7 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # LUT4: VCOM: VS 0 ~7 0x0A, 0x00, 0x00, 0x00, 0x00, # TP0 A~D RP0 0x00, 0x00, 0x00, 0x00, 0x00, # TP1 A~D RP1 0x00, 0x00, 0x00, 0x00, 0x00, # TP2 A~D RP2 0x00, 0x00, 0x00, 0x00, 0x00, # TP3 A~D RP3 0x00, 0x00, 0x00, 0x00, 0x00, # TP4 A~D RP4 0x00, 0x00, 0x00, 0x00, 0x00, # TP5 A~D RP5 0x00, 0x00, 0x00, 0x00, 0x00, # TP6 A~D RP6 0x15, 0x41, 0xA8, 0x32, 0x30, 0x0A, ] # Hardware reset def reset(self): digital_write(self.reset_pin, GPIO.HIGH) delay_ms(200) digital_write(self.reset_pin, GPIO.LOW) # module reset delay_ms(200) digital_write(self.reset_pin, GPIO.HIGH) delay_ms(200) def send_command(self, command): digital_write(self.dc_pin, GPIO.LOW) spi_writebyte([command]) def send_data(self, data): digital_write(self.dc_pin, GPIO.HIGH) spi_writebyte([data]) def wait_until_idle(self): while (digital_read(self.busy_pin) == 1): # 0: idle, 1: busy delay_ms(100) def TurnOnDisplay(self): self.send_command(0x22) self.send_data(0xC7) self.send_command(0x20) self.wait_until_idle() def init(self, update): if (module_init() != 0): return -1 # EPD hardware init start self.reset() if (update == self.FULL_UPDATE): self.wait_until_idle() self.send_command(0x12) # soft reset self.wait_until_idle() self.send_command(0x74) # set analog block control self.send_data(0x54) self.send_command(0x7E) # set digital block control self.send_data(0x3B) self.send_command(0x01) # Driver output control self.send_data(0xF9) self.send_data(0x00) self.send_data(0x00) self.send_command(0x11) # data entry mode self.send_data(0x01) self.send_command(0x44) # set Ram-X address start//end position self.send_data(0x00) self.send_data(0x0F) # 0x0C-->(15+1)*8=128 self.send_command(0x45) # set Ram-Y address start//end position self.send_data(0xF9) # 0xF9-->(249+1)=250 self.send_data(0x00) self.send_data(0x00) self.send_data(0x00) self.send_command(0x3C) # BorderWavefrom self.send_data(0x03) self.send_command(0x2C) # VCOM Voltage self.send_data(0x55) # self.send_command(0x03) self.send_data(self.lut_full_update[70]) self.send_command(0x04) # self.send_data(self.lut_full_update[71]) self.send_data(self.lut_full_update[72]) self.send_data(self.lut_full_update[73]) self.send_command(0x3A) # Dummy Line self.send_data(self.lut_full_update[74]) self.send_command(0x3B) # Gate time self.send_data(self.lut_full_update[75]) self.send_command(0x32) for count in range(70): self.send_data(self.lut_full_update[count]) self.send_command(0x4E) # set RAM x address count to 0 self.send_data(0x00) self.send_command(0x4F) # set RAM y address count to 0X127 self.send_data(0xF9) self.send_data(0x00) self.wait_until_idle() else: self.send_command(0x2C) # VCOM Voltage self.send_data(0x26) self.wait_until_idle() self.send_command(0x32) for count in range(70): self.send_data(self.lut_partial_update[count]) self.send_command(0x37) self.send_data(0x00) self.send_data(0x00) self.send_data(0x00) self.send_data(0x00) self.send_data(0x40) self.send_data(0x00) self.send_data(0x00) self.send_command(0x22) self.send_data(0xC0) self.send_command(0x20) self.wait_until_idle() self.send_command(0x3C) # BorderWavefrom self.send_data(0x01) return 0 def getbuffer(self, image): if self.width % 8 == 0: linewidth = self.width // 8 else: linewidth = self.width // 8 + 1 buf = [0xFF] * (linewidth * self.height) image_monocolor = image.convert('1') imwidth, imheight = image_monocolor.size pixels = image_monocolor.load() if (imwidth == self.width and imheight == self.height): # print("Vertical") for y in range(imheight): for x in range(imwidth): if pixels[x, y] == 0: x = imwidth - x buf[x // 8 + y * linewidth] &= ~(0x80 >> (x % 8)) elif (imwidth == self.height and imheight == self.width): # print("Horizontal") for y in range(imheight): for x in range(imwidth): newx = y newy = self.height - x - 1 if pixels[x, y] == 0: newy = imwidth - newy - 1 buf[newx // 8 + newy * linewidth] &= ~(0x80 >> (y % 8)) return buf def display(self, image): if self.width % 8 == 0: linewidth = self.width // 8 else: linewidth = self.width // 8 + 1 self.send_command(0x24) for j in range(0, self.height): for i in range(0, linewidth): self.send_data(image[i + j * linewidth]) self.TurnOnDisplay() def displayPartial(self, image): if self.width % 8 == 0: linewidth = self.width // 8 else: linewidth = self.width // 8 + 1 self.send_command(0x24) for j in range(0, self.height): for i in range(0, linewidth): self.send_data(image[i + j * linewidth]) self.send_command(0x26) for j in range(0, self.height): for i in range(0, linewidth): self.send_data(~image[i + j * linewidth]) self.TurnOnDisplay() def Clear(self, color): if self.width % 8 == 0: linewidth = self.width // 8 else: linewidth = self.width // 8 + 1 # print(linewidth) self.send_command(0x24) for j in range(0, self.height): for i in range(0, linewidth): self.send_data(color) self.TurnOnDisplay() def sleep(self): self.send_command(0x22) # POWER OFF self.send_data(0xC3) self.send_command(0x20) self.send_command(0x10) # enter deep sleep self.send_data(0x01) delay_ms(100) ### END OF FILE ###